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FOREWORD

It is the policy of the National Aeronautics and Space Administration to employ, in all formal
publications, the international metric units known collectively as the Systéme Internationale d’Unités
and designated SI in all languages. In certain cases, however, utility requires that other systems of
units be retained in addition to the SI units.

This document contains data so expressed because the use of the SI equivalents alone would im-
pair communication. The non-SI units, given in parentheses following their computed SI equivalents,
are the basis of the measurements and calculations reported here.
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FINITE-ELEMENT MODELING STUDIES IN THE
NORMAL-MODE METHOD AND NORMAL-MODE SYNTHESIS*

by
Roy Leon Courtney
Goddard Space Flight Center

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The normal-mode method of structural analysis has been developed into a powerful tool in the
analysis of large and complex aerospace structures. The value of this method lies in the fact that the
simultaneous differential equations of motion which describe the linear dynamic characteristic of a
structure are decoupled into independent differential equations when the displacements are expressed
in terms of the normal modes. A normal or natural mode of vibration occurs when each point in the
structure executes harmonic motion about a point of static equilibrium, with every point passing
through its equilibrium position at the same instant and reaching its maximum displacement at the
same instant. The form of the displacement of a structure is known as the normal-mode shape, and
the frequency of the harmonic motion is known as the normal-mode frequency. Additionally, normal-
mode shapes and frequencies are used to compute the modal properties of generalized mass, stiffness,
and structural damping associated with the modes.

There are basically two numerical methods of approach to the problem of determining the nor-
mal modes of structural systems: An exact problem formulation solved approximately and an approx-
imate formulation solved exactly. For certain simple systems the exact solution for normal modes can
be obtained by analytical methods. When it is impossible or very difficult to obtain an exact solution
of the partial differential equations governing a vibrating system, the system may be redefined in a dis-
crete form. The structure is approximated by an assembly of discrete structural elements having an
assumed distribution of stress and displacement. The complete solution is obtained by combining
these individual, approximate stress and displacement distributions in a manner that satisfies the force

*The information presented herein was submitted as a thesis in partial fulfillment of the requirements for the degree of Master of
Science in Engineering, The George Washington University, Washington, D.C., August 1970.
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equilibrium and displacement compatibility at the connection between elements. Methods based on
the discrete or finite-element approximations involve appreciable quantities of linear algebra that must
be organized into a systematic sequence of operations, which are handled most conveniently by the
use of matrix algebra. The formulation of a specific method of analysis in matrix algebra is ideally
suited for solution on the digital computer, which can be programmed for systematic compilation of
data and for execution of required operations.

As mentioned above, normal-mode analysis of structural systems has been the subject of a great
deal of investigation, especially in the aerospace field, where the dynamic response of efficient, light-
weight structures is of paramount interest. The National Aeronautics and Space Administration
(NASA) prepared a general review and useful bibliography of normal-mode analysis.! Application of
this method of analysis to space vehicles and a bibliography of both analytical and applied references
are presented by NASA 234

Finite-element analysis of complex structures requires large numbers of coordinates in the model,
resulting in equations so large as to overwhelm the best of analysts and computers. The technique of
normal-mode synthesis is a process whereby the dynamic characteristics of the several components of
the system are calculated separately and then brought together to evaluate the dynamic characteristics
of the entire system, thereby increasing computer efficiency.

Another major advantage of the normal-mode-synthesis technique is that the modal data may
come from such diverse sources as analytic solutions, finite-element analyses, and vibration tests de-
signed to determine normal modes. Thus, one structural analysis using modal synthesis can incorpo-
rate the representation of individual substructures analyzed by completely different techniques by
separate engineering groups that may never have conferred about the complete structure.

The concept of modal synthesis is founded on the principle that a substructure is completely (or
adequately) represented by its primary modes; if this is true, then the connections of these substruc-
tures at their interfaces can be described in terms of the modal quantities of the components. A set of
equations can be written with coordinates in terms of normal-mode shapes and modal factors of the
components. Solving these equations for the amplitude factors and multiplying by the component

modes yields system modes.

Several investigators have developed complete methods of analysis by substructures; these meth-
ods incorporate the concept of normal-mode synthesis. Gladwell® developed the branch mode method
of vibration analysis, which involves the imposition of a sequence of constraints on the system so that
in each constrained system or branch only a few adjoining components vibrate in modes, called branch
modes. These branch modes and appropriate rigid-body modes are used in a Rayleigh-Ritz analysis of
the complete system. Craig and Bampton® extended the branch mode method to systems having
highly redundant substructure boundaries.

Hurty”® presented the method of component-mode synthesis, in which the vibration modes of
the composite structure are synthesized from generalized coordinates that are defined by a finite num-
ber of displacement modes for each component structure. These displacement modes are generated in
three categories: Rigid-body, “constraint” modes, and “normal” modes.



MacNeal® devised a general solution to the problem of representing a part of a structure by its
vibration modes when some or all of its connection points to the rest of the structure are restrained
during measurement or calculation of substructure modes. This procedure is incorporated in the
present study and presented in detail in the following chapter.

Many computer programs have been written to solve the myriad structural problems, both specific
and general, to which finite-element theory can be applied. For example, NASA has committed alarge
amount of time, funds, and manpower to create a general-purpose computer program for structural
analysis called NASTRAN!® (an acronym for NAsa STRuctural ANalysis). Although demonstration
problems involving normal-mode modeling have been solved, no extensive study of the normal-mode-
synthesis technique has been performed with this computer program to date.

In this report the basis of normal-mode analysis and normal-mode synthesis is presented and mod-
eling studies using finite elements and modal synthesis for structural problems are evolved, performed
on NASTRAN, and compared to known analytic solutions for accuracy. The purpose of these studies
is threefold:

(1) To compare the results of the normal-mode solutions of structural problems analyzed by
finite-element and other methods for accuracy.

(2) To develop guidelines for efficient finite-elerent modeling so that required accuracies will
result from the analysis.

(3) To investigate modeling techniques in representing a part of a structure by its normal modes
as implemented on a structural-analysis computer program.

1.2 Notation

The letter symbols used in the present study are defined in the text where they first appear. For
convenience they are listed here in alphabetical order. Throughout the text square brackets, [ 1, de-
note two-dimensional arrays and braces,{ }, indicate column vectors.* The transpose symbol, T, ap-
pended to braces identifies a row vector. Subscripts are used with matrix notation to designate subsets
of displacement components.

a = Subscript denoting degrees of freedom.

A = Cross-sectional area; also accuracy.

b = Subscript denoting restrained degrees of freedom; also generalized damping factor.
¢ = Subscript denoting connection points; also angular constant.

E = Modulus of elasticity.
{r} = Force.
{F} = Force.

*This is the matrix notation adopted by NASTRAN. 10



g = Damping factor.

i = Subscript.

I =Moment of inertia.

J = Torsional constant.

k = Generalized stiffness.

[k] = Diagonal matrix of modal coefficient.
[K] = Structural stiffness matrix.

{ = Length.

m = Subscript; also generalized mass.

[m] = Diagonal matrix of modal coefficient.
[M] = Structural mass matrix.

n = Subscript denoting degrees of freedom.
N = Number of elements in model.

p = Subscript denoting physical points; also differential operator.
t =Time.

T = Superscript denoting transpose of matrix.

{u} = Displacement vector.

x = Coordinate.

y = Coordinate.

z = Coordinate.

B = Characteristic number.

¢ = Auxiliary modal coordinates.

A = Eigenvalue.

v = Poisson’s ratio.

¢ = Modal coordinates.

p = Mass per unit length.

¢ = Characteristic function.

{¢} = Eigenvector.

4



[¢] = Transformation matrix of eigenvectors.
[¥] = Transformation matrix.

w = Natural frequency of a vibration mode.






CHAPTER 2

METHOD OF ANALYSIS

2.1 Normal-Mode Analysis

In the normal-mode or modal method of dynamic problem formulation, the vibration modes of
the structure in a selected frequency range are used as the degrees of freedom. Thus the number of
degrees of freedom is reduced while the accuracy in the selected frequency range is maintained. In the
direct method, the degrees of freedom are simply the displacements at connection points between
substructures.

The advantage of the normal-mode method lies in the fact that the differential equations of mo-
tion of the structure are decoupled when the displacements are expressed in terms of the normal
modes. Thus, a structure with n degrees of freedom may be expressed by » independent differential
equations rather than by a system of n simultaneous differential equations.

The modal method of dynamic problem formulation is important in maximization of computa-
tional efficiency in certain types of problems. This method will usually be more efficient in problems
where a small fraction of the modes are sufficient to produce the desired accuracy in the range of in-
terest and where the stiffness matrix used in the direct method is not well banded. For problems with-
out dynamic coupling, i.e., for problems in which the matrices of the modal formulation are diagonal,
the modal method will frequently be more efficient, even though a large fraction of the modes are
needed.'®

The results of a normal-mode analysis of a part of a structural system modeled by finite elements
may be combined directly with modal data obtained from other sources to analyze the entire system.

2.2 Eigenvalue Analysis

Eigenvalue analysis yields structural vibration modes from the symmetric mass and stiffness mat-
rices, [M,,] and [K |, generated by static analysis. The eigenvectors and eigenvalues produced by this
analysis may be used to generate modal coordinates for further dynamic analysis.

The general form of the eigenvalue problem for vibration modes is
[Kaa - kMaa]{ua} = 0 > (1)

where {u,} is the displacement vector and the eigenvalues A; = wiz are the squares of the natural fre-
quencies. The results of the calculation are the eigenvalues and corresponding eigenvectors, {¢ai}, nor-
malized so that the largest element of each eigenvector is unity.



The eigenvalue extraction method used in the present analysis is called the inverse power method
with shifts, a particularly effective method of analysis for problems formulated by the displacement
approach when only a fraction of all of the eigenvalues are required. Section 10.4 of Reference 10
gives a complete description of the theory and application of this method as implemented in
NASTRAN.

2.3 Normal-Mode Synthesis

The normal-mode synthesis technique in structural analysis permits part of a structure to be de-
scribed by its orthogonal vibration modes. In some instances structural information may not be avail-
able in other forms. Thus, normal-mode information derived from diverse sources, including vibration
tests and other analyses such as energy methods and finite elements, may be combined in one struc-
tural analysis. Normal-mode synthesis has been found useful in many practical situations.?

Section 14.1 of Reference 10 develops the modeling technique utilized in the present study,
whereby a part of a structure is represented by its vibrational modes. This development is presented
below for completeness.

Description of part of a structure by vibration modes requires knowledge of how the connection
points between parts of the structure were supported when the vibration modes were measured or
computed. Three cases are distinguished:

(1) All connection coordinates free.
(2) All connection coordinates restrained.
(3) Some connection coordinates free and some restrained.

The first condition is usually employed in vibration tests or analyses of large parts. Often it is
not possible to achieve effectively unrestrained test conditions; however, unrestrained conditions can
be obtained from calculated modes.

2.3.1 Casel

For Case 1, in which the substructure modes are free at all connection coordinates, the required
data are the vibration mode frequencies, w;, the mode shapes or eigenvectors, {¢i}, and the mass distri-
bution of the part, expressed by the mass matrix [Mp]. The eigenvectors need not be normalized in
any particular manner. Let the degrees of freedom at the points of connection to the remainder of the
structure be designated by the vector {u .- Then the motions of these points are related to the modal

coordinates, {£;}, of the part by
{u ) =19, K&} - )

The columns of [¢,,] are the eigenvectors, {¢;} abbreviated to include only the degrees of freedom at
the connection points, {u }. The usual approximation of including only a finite number of eigenvectors
in [q’)a.] produces an idealized model for the part that is too stiff. Specification of the part is completed



by calculation of the generalized mass, m, stiffness, k;, and damping, b;, associated with each modal
coordinate, §;, as follows:

m; ={0, (M 18}, (3)
k;= wizml. , @

and
b; = gm;w; , 5

where g, is a damping factor for the ith mode. Frequently g; will not be accurately known.

The equation of motion for the generalized coordinate, §;, is

(m;p? +b,p + k)&, = {6, {f.}, (6)

where p is the differential operator, {f,} is the vector of forces applied to the substructure at the con-

nection points, and {¢,;} is the eigenvector {¢,} abbreviated to include only the degrees of freedom at
connection points.

Equations (2) through (6) contain all of the information required to describe the part. In the
construction of the idealized model, each of the rows of Equation (2) is regarded as an equation of
constraint between a constrained degree of freedom, u,, and the generalized coordinates, {‘g‘,.}. The
generalized mass, stiffness, and damping elements connected to &; are m,, k;, and b, respectively. Fig-
ure 1 illustrates the interconnection of the elements in diagrammatic form.

2.3.2 Cases2and 3

The derivation of an idealized model for Cases 2 and 3, in which some or all of the connection
points are restrained during measurement or calculation of the substructure modes, is considerably
more involved. A general solution devised by MacNeal® !0 is developed below.

£ k b
1
~ 1 1 .
>
\i] H . -
<
Modal B2 kb CONSTRAINTS Remainder
Coordinates = = — of
{ Ei} ! Structure
mz :: (UC) = [d)C'I] (E'I)
Y2
<
- £3 ks b3
\*
IEI:ZJ :
3
J Structurai
Coordinates
{uc)

Figure 1—Representation of a part of a structure by its vibration modes, Case 1: All
connection points are free while the modes are calculated.



The objective of this analysis is to derive a set of relationships that can be treated as equations of
constraint between the modal coordinates and the degrees of freedom at connection points (both free
and restrained). The modal mass, damping, and stiffness properties will be simulated by scalar struc-
tural elements, as in Case 1.

Let the degrees of freedom of the substructure be partitioned into {u,}, degrees of freedom that
are free in the substructure modes and {ub}, degrees of freedom that are restrained in the substructure
modes, i.e., the connection points. The equations of motion for the substructure (without damping)

can then be written as
fa [Kaa +Maap2 : Kab ua
Eraial RERbEECs St , (7)
f Kag |: Koy (2t

where {f,} and {,} are forces applied to the substructure. The mass of the substructure is assumed to
be concentrated at the free coordinates, {#,}, which include all coordinates not restrained in the sub-
structure modes. Any substructure mass on the restrained coordinates, {ub}, should be lumped into
the remainder of the structure because the masses on the restrained coordinates produce no effect dur-
ing the vibration modes of the substructure. They are, therefore, ignored in the modal representation
of the substructure. The stiffness matrix is partitioned in Equation (7) according to free and restrained
coordinates. Note that {u,} contains the free connection coordinates as a subset.

The substructure modal shapes are described by a modal transformation between the free coor-
dinates, {#,}, and modal coordinates, {§&), by

{u,) =19,1{&) . (8)
The corresponding generalized forces on the modal coordinates are
FARICIUTAS ©)

By virtue of the orthogonality property of vibration modes,
(9,)7[K,, + P*M,, 11,1 = [k, + m,p?], (10)

where [k;] and [m;] are diagonal matrices of the modal coefficients computed by Equations (3) and
(4). Now, if we use Equations (8), (9), and (10) to transform Equation (7),

ffz ki + mip2 E¢;iKab 5‘%
NP el Rt el 1—-- . (1D
l s Kb 1 Ky 4y
It is convenient to separate the inertia forces from Equation (11), so that if we define
{7y =1r) —m{p%,}, (12)

10



ki :¢IiKa Ei
[_____1____’1]§__l (13)

f;
{-;b} KaTb‘l’ai i Ky 1”1;5 .

Equation (13) is a stiffness equation in standard form. Placing &; on the left-hand side leads more

directly to a useful physical model:
{E,} [k? E ,-b]{fi} 4
PGl Bl h=iui Aty s
A ~Vip | Ky | g

[W;] = - 15,1 0, 1TIK, 1 , (15)
[R,,1 = [K,,] - [, ][k, )1¥,,] - (16)

where
and

If the set of restrained points {1, } is nonredundant, the matrix [K p 18 NUll; this condition will
be assumed. The matrix [,,] is calculated from properties of the vibration modes as follows: During
a vibration mode, {u,} = 0, and the vector of forces acting on the constraints is, from Equation (14),

{Fpr == {f) = W]T{F) = W, Tk g} (17)

We define [K bi] to be the matrix of forces on the constraints due to unit values of the modal coordi-
nates while the substructure is vibrating in its normal modes:

{F,) =K, 1) - (18)
Then, if we compare Equations (17) and (18),

[W,,] = Uk, UK, 1T (19)

or, in other words, [,,] is equal to [K bl.]T, with each row divided by the appropriate element of [£;].

We may also use [\llib] to define an auxiliary set of modal coordinates
& =1, Mu,} . (20)
Then, from the top half of Equation (14),
{Fiy =1k -5} (e3))

The free connection coordinates {u c} are a subset of {u .- The relation between {u c} and the
modal coordinates {§,} is

{u,)=10,,1&), (22)

where [¢_,] is the appropriate partition of [¢,]

11



Equations (12), (20), (21), and (22) provide a complete description of the substructure. They
are also used to construct the idealized model of the substructure, shown in Figure 2. The modal
dampers, b;, are placed across the modal springs, k,, if they simulate structural damping. If they simu-
late damping due to the viscosity of a surrounding fluid environment, they should be placed between
the modal coordinates and ground. Equation (20) expresses a new set of constraint equations between
the auxiliary modal coordinates and the degrees of freedom that are restrained in substructure modes.

The techniques discussed above provide the capability for the complete dynamic partitioning of a
structure, since all of the parts, rather than a few, may be represented by their respective vibration
modes.® The general case diagrammed in Figure 2 is particularly useful for this purpose. Consider, for
example, the missile structure shown in Figure 3. The missile is physically partitioned with support
conditions for the calculation of uncoupled vibration modes, as shown in the figure. The first parti-
tion, (a), is unsupported, while the others are cantilevered. The lumped-element model for the com-
posite system consists of parts with the form of Figure 2 connected in tandem. It is evident from the
form of the lumped-elemgnt model that the independent degrees of freedom consist of the modal
coordinates {£ }, {Sb}, {£,}, etc. The displacement sets {u 0B} {§b>, {ub, ¢} etc., are all constrained. The
dynamic equations, when written by the stiffness method, are banded with bandwidths equal to the
number of modal coordinates in three successive partitions.

The analyst should be cautioned against an uncritical use of dynamic partitioning techniques.
Use of a smaller number of modes as degrees of freedom to represent a dynamical system always re-
sults in a loss of mass, a loss of flexibility, or both. Procedures have been developed®!! for incorpo-
rating the “residual mass™ or the “residual flexibility” into the analysis with substantial increase in
accuracy. In general, however, established techniques for truncating the modes of a complete system
do not automatically give good results when applied to substructures.

& K
VW C'l
™
((o—i-e b ——e)
1
& kp
Structural N Y R Structural
Coordinates [+ ] vy MRS Coordinates
{u } -— l H] l -— {up)
b,
\h-‘ £ k .-—_.J
3
Vv C3
M3
Constraints ' ' b31 Constraints
{fu} = [o,;1 g5} (g} = [¥yp] (ug)

Figure 2—Representation of a part of a structure by its vibration modes, Cases 2
and 3: Some connection points are free and some are rigidly constrained.
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Figure 3—Dynamic partitioning of missile structure.






CHAPTER 3

MODELING STUDIES

3.1 General

The theory of normal-mode analysis and normal-mode synthesis presented in the previous chapter
is applied in this chapter to studies in problem formulation, i.e., modeling technique, for these two
methods of structural analysis. Structural problems for which known analytic solutions exist are de-
fined and modeled by finite elements. The results of the normal-mode analysis are directly incorpo-
rated in the modeling studies of the normal-mode-synthesis technique. The analysis of these results is
presented in the next chapter.

3.2 Normal-Mode Modeling Study
3.2.1 Description

The structural problem chosen to compare the accuracy of solutions obtained by different meth-
ods is the determination of the normal modes of vibration of a constant-property beam with various
end conditions. Vibration transverse to the axis of the beam is considered in only one plane. Damp-
ing and axial vibration are neglected.

The analytic method for the determination of the natural frequencies and modes of vibration of a
beam and a detailed derivation of the corresponding characteristic functions are given in standard
texts'®13 on structural dynamics. Young and Felgar'# tabulated the solution of the characteristic
functions of this problem, with vibrations governed by the well known differential equation

El— ~-p—=0, (23)

where x and y are the coordinates parallel and perpendicular, respectively, to the longitudinal axis of
the beam; ¢ is time; E is the modulus of elasticity; I is the moment of inertia; and p is the mass per
unit length of the beam. Each of the functions for a given beam satisfies the differential equation

de,
i Bio_ (24)

and also satisfies the boundary conditions corresponding to the end conditions of the beam. In
Equation (24) Bn is the characteristic number and ¢, (x) is the characteristic function for each

15
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type of beam. The natural circular frequency of the nth mode of vibration of the beam, w,, is

w, =B «/51 = 6,12 \/51 , 25)
p pl

where [ is the length of the beam. These results are assumed to be the “known’ solution to which the
finite-element results are compared for accuracy.

given by

The general type of finite element used to represent the beam in this study is a bar element that
undergoes extension, torsion, bending in two perpendicular planes, and the associated shears. The
restrictive assumptions for this element are that it is straight and unloaded except at its end and that
its properties are uniform from end to end. The stiffness matrix of the bar element is a 12 X 12 matrix
of coefficients that express the forces and moments acting on the six degrees of freedom (three trans-
lations and three rotations) at each of its two ends. Figure 4 shows a representation of the bar ele-
ment, its coordinate system, and its degrees of freedom. A lumped-mass distribution is applied in the
development of the mass matrix of the element. The specific element used in the present modeling
study is identified in the NASTRAN computer program by the mnemonic, CBAR, denoting the “con-
nection, bar,” element. Section 5.2 of Reference 10 presents the detailed analytic description of this

finite element.

The uniform beam is represented by four different finite-element models consisting of 5, 10, 20,
and 40 elements, respectively, to ascertain the effect of the number of elements upon the accuracy of
results. For ease in correlation of finite-element and differential equation results, beam properties
were chosen to reduce to 1 the value of the terms within the radical in the second expression for w in
Equation (25). Figure 5 shows the four beam models. Thus, the natural frequency in radians per sec-
ond of the nth mode resulting from the eigenvalue analysis of the finite-element formulation is directly
comparable to the term (5,/)2 of Equation (25) as
tabulated in Reference 14 for various beam types.

y x X
Free, supported, and clamped beam end con-
Ry C! =§ /T'x ditions are combined to obtain six different types
of beams: (1) Free-free, (2) free-supported, (3)
Tyf free-clamped, (4) supported-supported, (5)

supported-clamped, and (6) clamped-clamped.

1\# 7 3.2.2 Implementation

The normal-mode modeling study is imple-
mented on the NASTRAN computer program.
NASTRAN embodies a lumped-clement approach,
R = Rotation whereby the distributed physical properties of a

structure are represented by a model consisting of
a finite number of idealized substructures or ele-
Figure 4—Bar element. ments that are interconnected at a finite number

T = Translation
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Figure 5—Four finite-element models of a beam.

of grid points, to which loads are applied. All in-
put and output pertain to the idealized structural
model.

The structural problem is defined by encod-
ing the required information on punch cards ac-
cording to prescribed formats given in Reference
15. For the present study, the following informa-
tion is required: Coordinate-system definition,
grid-point definition, elements connected between
grid points, cross-sectional and material properties,
constraints on ends of the beam, and method of
eigenvalue extraction.

The problem thus defined undergoes eigen-
value analysis, which computes the following for
each of the modes analyzed: Eigenvalue, eigenvec-
tor normalized to the maximum displacement, nat-
ural frequency in radians per second and cycles per
second, generalized stiffness, and generalized mass.

In Chapter 4, the natural frequency resulting from the finite-element, normal-mode analysis is
compared for accuracy to the known solution. The eigenvector and generalized properties of each
mode are used in the following modeling studies involving normal-mode synthesis.

3.3 Normal-Mode-Synthesis Modeling Study

3.3.1 General

The results of the normal-mode analysis provides a basis for solution of the following problems
by synthesis of the normal modes of the constituent parts, i.e., by representing a part of a structure by
its vibration modes. The eigenvectors and generalized properties of the first i modes of the beam with
free-free end conditions are used in the application of the theory developed for normal-mode synthesis

in Section 2.3.1.

3.3.2 Single-Component Structure

The structural problem chosen to demonstrate the synthesis of normal modes and to investigate
the accuracy of the technique is the determination of the normal modes of a uniform cantilevered
beam, i.e., a beam with fixed-free end conditions. The beam consists of a single component modeled
by the modal properties of a beam with free-free end conditions. The first i free-free normal modes
are selected to model the beam, where i must include the first two modes that are rigid-body modes.
The generalized stiffness given by Equation (4) is zero for rigid-body modes since the natural fre-
quency is zero. The various values of i selected include the two rigid-body modes plus arbitrarily se-
lected flexible modes. The source of the modal information is the four finite-element models used in
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the normal-mode analysis of Section 3.2, which consisted of 5, 10, 20, and 40 elements, respectively.
Thus, for example, in the 10-element model the first i modes were used, where i=3, 5, 7,9, and 11.
The following chapter presents the numerical results and compares them to known solutions for the
modes of the cantilevered beam.

Implementation of the normal-mode synthesis on the NASTRAN program requires the declara-
tion of the following for each mode used to model the structural part: (1) Scalar point, which is a
point in vector space at which one degree of freedom is defined, (2) scalar mass and stiffness connec-
tion elements whose values are the generalized mass and stiffness, and (3) the coefficients of the ma-
tric [¢,;] of Equation (2), the columns of which are the eigenvectors of the ith mode, truncated to in-
clude only the degrees of freedom at the connection points. The scalar points become the generalized
coordinates and degrees of freedom for the analysis. The relationship given by Equation (2) is declared
in NASTRAN by a multipoint constraint equation.

Simulation of restrained end conditions of the beam is most easily accomplished by the connec-
tion of a spring of very large spring constant, e.g., 1012 N/m (1010 Ib/in.),* at the connection points
between ground and the restrained degrees of freedom. Figure 6 shows a representation of the model
used for normal-mode synthesis of a single cantilevered beam.

3.3.3 Multiple-Component Structures

The modeling techniques described for a single-component structure are extended to structures
with multiple components. In each problem formulation, the required modal information for each
substructure is identical to that required in the preceding structure. Boundary conditions of the
multiple-substructure problem are handled in the same manner as the end conditions of a single-
element cantilever beam. Connections between adjoining substructures are made by declaring a scalar

Modal Coordinates

‘ b >
3:::::—‘ CONSTRAINTS M
f —* {Uc}' [¢Ci]~{£i} ] )
Structural Structural
Coordinates {Uc} Coordinates{uc}

Figure 6—Representation of the model for normal-mode synthesis of a
single cantilevered beam.

*The quantity that appears in parentheses in the text is the value that was used in the modeling study.
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spring element with a very large spring constant between appropriate translational and rotational de-
grees of freedom.

Structural normal modes are obtained by the normal-mode-synthesis technique as applied to the
following structures, each divided into more than one substructure: (1) Three beams in series, canti-
levered, (2) three beams in parallel, cantilevered, and (3) three beams in a portal arch. Figure 7 shows
sketches of these structures. The next chapter presents the comparison of the results of the modeling
study and the known solution as given by Equation (25) for the first and second structures and by a
120-finite-element model for the third structure.

- 3/

Ly

(a) Three beams in series, cantilevered.

iz

—/—

(b) Three beams in parallel, cantilevered.

|
ARIT;HHh ittty

{c) Three beams in a portal arch.

Figure 7—Multiple-component structures mod-
eled by normal-mode synthesis.
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CHAPTER 4

ANALYSIS OF MODELING STUDIES

4.1 General

This chapter presents the analysis and numerical results of the modeling studies described in the
preceding chapter. These studies are implemented on the NASTRAN computer program, Release 11.1,
which is operational on the IBM System 360/95 at Goddard Space Flight Center.

4.2 Normal-Mode Analysis

Values and units for the parameters required for the finite-element models described in Section
3.2 are chosen as follows: *

Modulus of elasticity, E = 6.9 X 10! N/m? (108 Ib/in.?).
Poisson’s ratio, v=0.3.

Mass per unit length, p =6.9 X 103 N-sec?/m? (1.0 lb-sec?/in.?).
Area moments of inertia, 1, , = 41.6 cm? (1.0 in.%).

Cross-sectional area, A=6.5 cm? (1.0 in.2).

Torsional constant, J=41.6 cm® (1.0 in.%).

Length, /=254 cm (100 in.).

Thus, the four models of the uniform beam consist of 5, 10, 20, and 40 bar elements, whose ele-
mental lengths are 50.8, 25.4, 12.7, and 6.4 cm (20, 10, 5, and 2.5 in.),* respectively (Figure 5). As
previously stated, this choice of parameter values permits direct comparison of the results of the eigen-
value analysis with those tabulated in Reference 14.

The complete matrix of problems studied consists of the four finite-element models solved for
each of the six end conditions: (1) Free-free, (2) free-supported, (3) free-clamped, (4) supported-
supported, (5) supported-clamped, and (6) clamped-clamped. Appendix A records the numerical re-
sults of the eigenvalue analyses for these six end conditions. Recorded data include—

(1) Mode number,i=1,2,3,...20.
(2) Natural circular frequency of the ith mode of vibration of the beam in radians per second for
the known solution given in Reference 14.

*The quantities that appear in parentheses in the text, and the value of Poisson’s ratio, are the exact values that were used in the
modeling study.
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(3) Accuracy, A, defined as the ratio of the finite-element solution to the known solution. This
definition of accuracy shall be maintained throughout the analysis of results.

In general, if n is the number of unrestrained, independent degrees of freedom of the problem,
then n normal modes exist. For example, six grid points are required to model the 5-element beam.
For the free-free type beam, n = 6. These consist of two rigid-body modes and four flexible modes.
Supporting one end of the beam reduces » by one and results in one rigid-body mode and four flexible
modes. Clamping one end prohibits rigid-body motion. In Appendix A, only flexible modes are re-
corded.

Figure 8, a representative of the data recorded for the six end conditions, shows the normal-mode
results for modes 1, 2, 3, 4, 5,9, and 15 of the free-free type of beam. The coordinates of the figure
are the number of finite elements in the model, N, versus the accuracy, A, of modal frequency, de-
fined above. In general, accuracy approaches 1.0 asymptotically from below as the number of ele-
ments increases. The plot passes through the origin, since zero finite elements result in zero accuracy.

This relationship is expressed by
N =tan[Af(, )], (26)

where N is the number of elements in the model, f(i, ¢) is a function of the mode number, i, and ¢ is
an angular constant.

Equation (26) can be used to estimate the number of finite elements required to model the beam
for selected values of mode number, i, desired minimum accuracy, 4, and beam end conditions. For
example, for the beam with free-free end conditions, when

N>i+2, (27)
these parameters determined by curve-fitting the empirical data are defined as

fG,e)=c+i
and (28)
c=87.7 deg .

For A=0.90 and { = 2, Equation (26) yields N = 6.1; when rounded to the next highest integer,
N =7. This estimate is verified by Figure 8.

A comparison of accuracies for both mode numbers and finite-element models as recorded in
Appendix A reveals a general trend in the accuracy of the finite-element solution. For a specific mode
number or for a specific number of finite elements in the beam model, a reduction in the degrees of
freedom at the ends of the beam results in increased accuracy of the solution. This observation is ex-
plained by the fact that a decrease in freedom of the structure at the boundary requires a given num-
ber of elements to describe less complex displacements in the eigenvector, i.e., less difference in the
end displacements of individual elements. Therefore, Equations (26), (27), and (28), when applied to
beams with increased end fixity, represent overestimates of the minimum number of elements that will
yield specified accuracies in the eigenvalue solution.
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Figure 8—Results of normal-mode analysis of a beam with free-free end
conditions.

4.3 Normal-Mode Synthesis
4.3.1 Single-Component Structure

Numerical results of the single-component problem discussed in Section 3.3.2 are tabulated in
Appendix B, Tables B1 through B4. They correspond to the 5-, 10-, 20-, and 40-element beam mod-
els, respectively, used as sources of the substructure normal modes. The normal modes are computed
for free-free end conditions. The first i modes are used to model the substructure. Data recorded in
Tables B1 through B4 include the number of normal modes, i, used to synthesize the model, the
known solution, and the accuracy, A, of the modal frequency defined as the ratio of the synthesized
result to the known solution, as in the normal-mode analysis.

Representative data are shown in Figure 9a, which plots i versus A for the first, second, third, and
fifth model frequencies of the uniform cantilevered beam. Curves are included for the normal-mode
source beams consisting of 5, 10, 20, and 40 elements.

Figure 9b shows the effect of varying i to represent a substructure in a plot of i versus 4 for
modal data recorded in Table B3, i.e., only for the normal-mode source model consisting of 20 finite
elements.

The following generalizations are drawn from the recorded and plotted data for this structure
modeled by component modes:
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NUMBER OF NORMAL MODES, i, USED TO MODEL THE STRUCTURE

(a)

(b}

NUMBER OF NORMAL MODES, i, USED TO MODEL THE STRUCTURE
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ACCURACY, A, OF NORMAL-MOCE FREQUENCY
Cantilevered beam modeled by free-free modes computed from source beams containing
5, 10, 20, and 40 elements (Tables B1 through B4).
B——— —_
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ACCURACY, A, OF NORMAL-MODE FREQUENCY
Cantilevered beam modeled by free-free modes computed from a 20-element source beam

(Table B3).

Figure 9—Results of normal-mode synthesis of a single-component structure.
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(1) There is nearly constant accuracy in model frequency for the i - 2 modes where the first i
normal modes are used to represent the substructure.

(2) Accuracy of modesi and i — 1 are extremely poor, i.e., inaccurate by more than an order of
magnitude.

(3) For the minimum number of synthesized normal modes used to model the substructure, best
accuracy for a specific normal mode, i, of the structure is obtained when i = i’ + 2. Thus, for a spe-
cific i’, a nontruncated set of normal modes represents a substructure more accurately than does a
truncated set of modes.

4.3.2 Multiple-Component Structures

The several problems described in Section 3.3.3 exercise the normal-mode-synthesis technique for
structures with more than one separable substructure.

Each structure is composed of three uniform beams previously discussed and analyzed by the
normal-mode method. Each component beam is represented by the first 12 normal modes, i.e., two
rigid-body modes and 10 flexible modes evaluated by the 40-element beam analysis for free-free end
conditions. The 40-element source beam produces the most accurate results, therefore it is used to
minimize error in the component modes. Stiffness connection elements, i.e., springs with very large
spring constants, are used to couple the degrees of freedom of the substructures that are unrestrained
when their normal modes are computed. Similarly, these fictitious springs provide the means to fix
boundary conditions by connecting the appropriate degrees of freedom to ground.

The first structure studied is a cantilevered beam whose length is 3/, composed of three uniform
segments, each / in length, in series (see Figure 7). Substitution of 3/ for [/ in Equation (25) yields the
known solution for modal frequency. Table B5 presents the known solutions and the accuracy, A4, of
normal-mode-synthesis results as a function of the number of modes, i, used to model each component.
Figure 10 shows these data plotted as i versus A for representative normal modes of the complete
structure. The curves approach an accuracy of 1.0 asymptotically from above as the number of nor-
mal modes synthesized for the substructures increases. The accuracy of the synthesized-structure
modal frequency varies over a narrow range of values for modes numbered from 1 to nearly 2i. For
example, when seven modes are used to model each substructure, accuracy of the model frequency
varies between 1.07 and 1.16 for all the structural modes numbered from 1 to 15. The model frequen-
cies are inaccurate by an order of magnitude for structural modes greater than 2i. As/ increases, the
range of values for 4 narrows and approaches 1.0. Reasonable engineering accuracy, e.g., within 10
percent, is obtained by use of a moderate number of component modes in the model. For example,
10-percent accuracy is obtained in the first mode when i = 6 and in the second mode when i = 7. When
i =12, all of the first 20 modes of the structure are computed with less than 10-percent error.

For the second structure, three parallel beams are fixed at one end and connected at the other.
Table B6 gives data similar to that for the preceding structure. The known solution is the same as that
for the single cantilevered beam, since the 3’s cancel in the numerator and denominator of the term
within the radical of Equation (25). Connections between components are made by the technique
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Figure 10—Results of normal-mode synthesis of a multiple-component structure, three uniform beams in parallel,
cantilevered.

discussed for the previous structure. Normal-mode synthesis yields three computed modes correspond-
ing to each mode of a single cantilevered beam. In the first synthesized mode all three parallel beams
move in the same characteristic mode. In each of the other two synthesized modes, two beams move
in the same cantilevered mode, while the third parallel beam takes a different mode shape. Good accu-
racy in modal frequency is obtained for structural modes in which each of the three components are
characterized by the same substructure mode. This problem formulation demonstrates the ability of
the synthesis technique to determine modes of the complete structure, which cannot be obtained from
a simple combination of modes of the substructures.

The third structure is a three-member portal frame chosen to demonstrate the interconnection
between substructures. Here the fictitious springs connect the appropriate degrees of freedom (see
Figure 7). Rotations at the ends of adjoining beams are connected to maintain continuity of displace-
ment between substructures. Transverse displacements at the top of the two vertical-support beams
are connected, since longitudinal extension of the horizontal beam is neglected. Table B7 tabulates
the following data for this structure: The known solution for normal modes, the mode number and
type with respect to symmetry, and the accuracy, A4, of the normal-mode-synthesis technique. The

26

-r



results of a finite-element, normal-mode analysis are assumed to be the known solutions. This model
consists of 40 bar elements for each of the three constituent beams. Accuracy is poor for the first
symmetric and antisymmetric modes, i.e., approximately 55 percent error. However, accuracy im-
proves with higher mode numbers.
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CHAPTER 5

CONCLUSIONS

In this report, the bases in finite-element analysis of the normal-mode method and the normal-
mode-synthesis technique were presented and their features and applications were discussed. A normal-
mode modeling study of a uniform beam resulted in guidelines for prediction of accuracy in analysis
compared to a known solution for the problem. Modal data from this modeling study were used to
represent substructures in a modeling study of the normal-mode synthesis. One single-component
structure and three multiple-component structures demonstrated normal-mode synthesis and its mod-
eling techniques as implemented on NASTRAN, a structural analysis computer program.

The limited examples treated in the present study are intended to investigate accuracy obtained
by the analyses and to demonstrate the application of these techniques on a generally available com-
puter program. Accuracy guidelines can be applied judiciously to similar structures, e.g., tapered
beams. Though normal modes may be synthesized from many diverse sources, the analyst should be
cautioned to use extreme care in dynamic partitioning techniques, especially when truncating the
modes used to represent a substructure.

The selection of an adequate number of finite elements needed to model a structure yields good
accuracy in the solution obtained by normal-mode analysis. The synthesis of components represented
by their normal modes yields more accurate results for the entire structure when the component
modes are characteristic of the modal contribution of the substructure than when these modes are not
characteristic of the modal contributions. Further study of the reason for the less accurate resuits
may lead to a better understanding of the general applications and limitations of normal-mode synthesis.
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Appendix A presents the numerical results of the normal-mode analysis of a uniform beam for

Numerical Results of Normal-Mode Analysis

the following end conditions:

(1
(2)
(3)
4
(5)
(6)

In Appendices A and B the accuracy, 4, is defined as the ratio of the finite-element solution to

Free-free
Free-supported
Free-clamped
Supported-supported
Supported-clamped

Clamped-clamped

(Table Al)
(Table A2)
(Table A3)
(Table A4)
(Table AS5)

(Table A6)

Appendix A

the known solution. In Appendix A, N denotes the number of bar elements used to model the uniform

beam.
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Table A1—Uniform beam with free-free end conditions.

Frequency
Mode of known
number solution
(rad/sec)
1 22.373
2 61.673
3 120.90
4 199.86
5 298.56
6 416.99
7 555.16
8 713.08
9 890.73
10 1088.1
11 1305.3
12 1542.1
13 1798.7
14 2075.1
15 2371.2
16 2687.0
17 3022.6
18 3377.9
19 3752.9
20 4147.7

34

N=5

0.893
.838
.796
.734

Accuracy, A
N=10 N=20
0.970 0.992

.951 .987
.933 .982
916 977
.900 .972
.883 .967
.857 .962
.815 .957
.743 951
.945
.939
.930
919
.905
.886
.860
.826
.783
.730

N=40

0.998
.997
.995
.994
.993
.992
.990
.989
.988
.986
.985
983
982
.980
979
977
.975
973
971
.969




Table A2—Uniform beam with free-supported end conditions.

Frequency Accuracy, A
Mode of known
number solution

(rad/sec) N=5 N=10 N=20 N=40

1 15.418 0.951 0.987 0.997 0.999
2 49.965 .916 977 .994 .999
3 104.25 .882 .967 .992 .998
4 178.27 .815 .957 .989 .997
5 272.03 .945 .986 .997
6 385.53 .930 .983 .996
7 518.77 .905 .980 .995
8 671.75 .860 977 .995
9 844.47 .783 .973 .994
10 1036.9 .969 .993
11 1249.1 .963 .992
12 1481.1 955 .991
13 1732.7 .945 .991
14 2004.1 .931 .990
15 2295.3 911 .989
16 2606.2 .884 987
17 2936.8 .849 .986
18 3287.2 .803 985
19 3657.3 .749 .984
20 4047.1 .983




Table A3—Uniform beam with free-clamped end conditions.

Frequency Accuracy, A
Mode of known
number solution

(rad/sec) N=35 N=10 N=20 N=40

1 3.5160 0.982 0.995 0.999 1.000
2 22.034 941 984 .996 0.999
3 61.697 907 974 .993 0.998
4 120.90 .863 .964 991 0.998
5 199.86 .766 .954 .988 0.997
6 298.56 941 .986 0.996
7 416.99 .922 .082 0.996
8 555.16 .890 .980 0.995
9 713.08 .835 976 0.994
10 890.73 .749 972 0.994
11 1088.1 .967 0.993
12 1305.2 .960 0.992
13 1542.1 952 0.991
14 1798.7 .940 0.990
15 2075.1 .923 0.989
16 2371.2 .900 0.988
17 2687.0 .871 0.987
18 3022.6 .833 0.986
19 3377.9 .786 0.984
20 3752.9 .731 0.982
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Table A4—Uniform beam with supported-supported end conditions.

Frequency Accuracy, 4
Mode of known
number solution

(rad/sec) N=5 N=10 N=20 N=40

1 9.8696 0.999 0.999 1.000 1.000
2 39.478 .997 .999 0.999 1.000
3 88.826 .981 .999 0.999 1.000
4 157.91 .909 .997 0.999 0.999
5 246.74 .993 0.999 0.999
6 355.30 981 0.999 0.999
7 483.61 .957 0.999 0.999
8 631.65 .909 0.998 0.999
9 799.44 .825 0.996 0.999
10 986.96 0.993 0.999
11 1194.2 0.988 0.999
12 1421.2 0.981 0.999
13 1668.0 0.971 0.999
14 1934.4 0.971 0.999
15 2220.7 0.937 0.998
16 2526.6 0.909 0.998
17 2852.3 0.872 0.997
18 3197.7 0.825 0.995
19 3562.9 0.768 0.994
20 3947.8 0.993




Table A5—Uniform beam with supported-clamped end conditions.

Frequency Accuracy, A
Mode of known
number solution

(rad/sec) N=35 N=10 N=20 N=40

1 15.418 0.999 1.000 1.000 1.000
2 49.965 .994 1.000 1.000 1.000
3 104.25 963 0.999 1.000 1.000
4 178.27 .852 0.996 1.000 1.000
5 272.03 0.989 0.999 1.000
6 385.53 0.973 0.998 0.999
7 518.77 0.941 0.998 0.999
8 671.75 0.882 0.997 0.999
9 844.47 0.789 0.995 0.999
10 1036.9 0.991 0.999
11 1249.1 0.986 0.999
12 1481.1 0.978 0.999
13 1732.7 0.966 0.999
14 2004.1 0.949 0.998
15 2295.3 0.927 0.998
16 2606.2 0.896 0.997
17 2936.8 0.856 0.996
18 3287.2 0.807 0.995
19 3657.3 0.749 0.994
20 4047.1 0.992
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Mode
number

O 0o 30 b W=

Table A6—Uniform beam with clamped-clamped end conditions.

Frequency
of known
solution
(rad/sec)

22.373
61.673
120.90
199.86
298.56
416.99
555.16
713.08
890.73
1088.1
1305.3
1542.1
1798.7
2075.1
2371.2
2687.0
3022.6
3377.9
3752.9
4147.7

N=5

0.999
.988
.936
.790

Accuracy, A
N=10 N=20 N=40
1.000 1.000 1.000
0.999 1.000 1.000
0.998 1.000 1.000
0.994 1.000 1.000
0.984 0.999 1.000
0.963 0.999 1.000
0.922 0.998 1.000
0.852 0.996 1.000
0.754 0.993 1.000
0.989 1.000
0.983 0.999
0.974 0.999
0.960 0.999
0.941 0.998
0.915 0.998
0.882 0.997
0.840 0.996
0.789 0.995
0.731 0.993
0.991
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Appendix B

Numerical Results of Normal-Mode Synthesis

Appendix B presents the numerical results of the normal-mode-synthesis modeling studies. Each
table includes a problem description for the tabulated data.
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Table B1—Normal-mode synthesis of a uniform cantilevered beam modeled by the first i free-free
normal modes computed from a source beam consisting of 5 finite elements.

Mode
number

Frequency
of known
solution
(rad/sec)

AN AW =

3.5160
22.034
61.697

120.90
199.86
298.56

Accuracy, A
i=3 i=5
1.485 1.221
22.10 1.236
424.3 16.02
246.2

1.115
1.095
1.088
1.072
9.329
106.1

Table B2—Normal-mode synthesis of a uniform cantilevered beam modeled by the first i free-free
normal modes computed from a source beam consisting of 10 finite elements.

Mode
number

Frequency
of known

solution
(rad/sec)

— O D 00 1IN R W e

[

3.5160
22.034
61.697

120.90
199.86
298.56
416.99
555.16
713.08
890.73
1088.1
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1.585
21.83
449 .4

1.192
1.206
1.236
12.80
187.6

Accuracy, A

i=7 i=9
1.096 1.064
1.095 1.059
1.095 1.056
1.100 1.053
1.112 1.051
10.26 1.067
102.3 1.040
8.299

62.67

1.058
1.052
1.048
1.044
1.040
1.035
1.023
0.9895
0.9135
5.894
41.43




Table B3—Normal-mode synthesis of a uniform cantilevered beam modeled by the first i free-free

Mode
number

00 1OV b W=

DO = et gt et e et ek e et e
O o010k WN = OO

normal modes computed from a source beam consisting of 20 finite elements.

Frequency

Accuracy, 4

of known

solution
(rad/sec) i=3 i=7 i=12 i=17 i=21
3.5160 1.628 1.147 1.069 1.041 1.027
22.034 21.69 1.157 1.071 1.041 1.027
61.697 458.0 1.167 1.073 1.042 1.027
120.90 1.183 1.075 1.042 1.027
199.86 1.210 1.077 1.043 1.027
298.56 9.018 1.080 1.043 1.027
416.99 117.0 1.083 1.044 1.027
555.16 1.088 1.045 1.027
713.08 1.095 1.046 1.027
890.73 1.107 1.047 1.027
1088.1 6.419 1.048 1.027
1305.3 1.050 1.027
1542.1 1.053 1.028
1798.7 1.057 1.028
2075.1 1.063 1.028
2371.2 5416 1.029
2687.0 29.13 1.029
3022.6 1.030
3377.9 1.032
3752.9 3.872
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Table B4—Normal-mode synthesis of a uniform cantilevered beam modeled by the first i free-free
normal modes computed from a source beam consisting of 40 finite elements.

44

Frequency Accuracy, A
Mode of known -
number solution

(rad/sec) i=3 i=17 i=12 i=17 i=22

1 3.5160 1.619 1.132 1.052 1.031 1.029
2 22.034 21.73 1.139 1.052 1.030 1.027
3 61.697 456.3 1.147 1.051 1.029 1.026
4 120.90 1.162 1.054 1.030 1.028
5 199.86 1.183 1.052 1.027 1.024
6 298.56 9.455 1.053 1.026 1.023
7 416.99 114.1 1.054 1.025 1.021
8 555.16 1.056 1.024 1.020
9 713.08 1.059 1.022 1.018
10 890.73 1.066 1.020 1.016
11 1088.1 7.140 1.018 1.013
12 1305.3 1.013 1.008
13 1542.1 1.007 1.001
14 1798.7 0.996 0.990
15 2075.1 0.981 0.973
16 2371.2 5.530 0.949
17 2687.0 24.11 0.914
18 3022.6 0.868
19 3377.9 0.809
20 3752.9 1.034




Table B5—Normal-mode synthesis of a uniform cantilevered beam composed of three identical
substructures, each of which is modeled by the first i free-free modes computed from a 40-finite-

element source beam.

. . ,,,
requency Accuracy, 4
Mode of known
number solution
(rad/sec) i=3 i=5 i=7 i=12
1 0.3906 1.231 1.113 1.073 1.040
2 2.4482 1.365 1.159 1.099 1.047
3 6.8552 1.754 1.277 1.159 1.065
4 13.433 25.09 1.122 1.063 1.026
5 22.206 114.7 1.189 1.105 1.047
6 33.173 150.7 1.240 1.146 1.075
7 46.332 1.134 1.066 1.030
8 61.684 1.195 1.110 1.049
9 79.231 1.262 1.173 1.070
10 98.970 13.77 1.127 1.030
11 120.90 94.62 1.140 1.051
12 145.02 1.154 1.079
13 171.34 1.123 1.039
14 199.85 1.138 1.055
15 230.56 1.160 1.074
16 263.46 9.990 1.038
17 298.56 74.22 1.055
18 335.84 1.080
19 375.32 1.056
20 | owess ||| 1.063
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Table B6—Normal-mode synthesis of three parallel beams fixed at one end and mutually connected
at their other ends. Each component beam is modeled by the first 12 free-free modes computed
from a 40-finite-element source beam.

Mode number
of single
cantilever
beam

1
2

Frequency
of known
solution
(rad/sec)

3.5160
22.034
none
none
61.697
none
none
120.90
none
none
199.86
nomne
none
298.56
none
none

Mode number
of three
parallel

beams

1
2
2a
2b
3
3a
3b
4
4a
4b
5
5a
5b
6
6a
6b

Computed
natural
Frequency
(rad/sec)

3.760
23.60
26.01
26.01
66.18
70.82
70.82

129.9
142.3
142.3
215.2
231.9
231.9
3223
357.1
357.1

Accuracy, 4

1.069
1.070

1.073

1.075

1.077

1.080

Table B7-Normal-mode synthesis of a three-beam portal frame, each component of which is
modeled by the first 12 free-free modes computed from a 40-finite-element source beam. Known
solutions are the eigenvalue results of a finite-element model of the portal frame in which 40 bar
elements represent each beam.

Portal

frame

mode
number

W W NN = =

46

Mode

antisymmetric
symmetric
antisymmetric
symmetric
antisymmetric
symmetric

Frequency
of known
solution

(rad/sec)

3.2035
12.620
20.621
22.275
44.794
54.953

Accuracy, 4

1.532
0.573
0.989
1.037
0.875
1.004
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